2.2.5. Persistent Mobile Organic Chemicals (PMOCs)

Authors: Pim de Voogt

Reviewers: John Parsons, Hans Peter Arp

 

Leaning objectives:

You should be able to:

 

Keywords: Mobility, persistence, PMT

 

Introduction

Ecosystems and humans are protected against exposure to hazardous substances in several ways. These include treating our wastewater so that substances are prevented from entering receiving surface waters, and purification of source waters intended for drinking water production.

Currently, a majority of the drinking water produced in Europe is either not treated or treated by conventional technologies. The latter remove substances by degradation (physical, microbiological) or by sorption. However, chemicals that are difficult to break down and that can pass through soil layers, water catchments and riverbanks and cross natural and technological barriers may eventually reach the tap water. Typically, these chemicals are persistent and mobile.

 

Polarity

When the electrons in a molecule are unevenly divided over its surface, this results in an asymmetric distribution of charge, with positive and negative regions. Such molecules have electric dipoles (see Figure 1) and are polar, in contrast to molecules where the charge is evenly distributed thus resulting in the molecule being neutral or apolar. The ultimate form of polarity is when a permanent charge is present in a compound. Such chemicals are called ionogenic. We distinguish between cations (having a permanent positive charge, e.g. protonated bases, and quaternary amines) and anions (negatively charged ions, e.g. dissociated acids, and organosulfates). Ionic charges in molecules can be pH dependent (e.g. acids and bases). Most, and in particular small, polar and ionic chemicals are water soluble, in other words they have a strong affinity to water (often referred to as hydrophilic). Because water is one of the most polar liquids possible (a strong negative charge on the oxygen and two strong positive charges on each hydrogen), this means that for very polar organic molecules solvation by water is more favorable energetically then sorption to solid particles.

 

         

Figure 1. A model of ethanol showing the volume that is occupied by its electrons (A) and the direction of the dipole (B). The distribution of the electrons in an ethanol molecule is skewed relative to the protons to give a region having a partial negative charge, which is shown in red, and a corresponding region having a partial positive charge, which is shown in blue. (source: https://www.chem.uwec.edu/Chem150_Resources/content/elaborations/unitx/unit1-e-polarity.html and http://www.utdallas.edu/~biewerm/10-alcohols.pdf)

 

Chemicals that are nonpolar are inherently poorly water soluble and therefore tend to escape from the water compartment, resulting in their evaporation, or sorption to sediments and soils, or uptake and accumulation in organisms. It is therefore relatively easy to remove them from water during water treatment.  In contrast, mobile organic chemicals, especially those that do not breakdown easily, pose a more serious threat for (drinking) water quality because they are much more difficult to remove. It should be noted that mobility and polarity can be thought of as a gradient, rather than a distinct category, with water being the most polar molecule, a large aliphatic wax being the most non-polar molecule, and all other organic molecules falling somewhere in the spectrum between.

In a recent study contaminants were analysed in Dutch water samples covering the journey from WWTP effluent to surface water to groundwater and then to drinking water. While the concentration level of total organic contaminants decreased by about 2 orders of magnitude from the WWTP effluents to the groundwater used for drinking water production, the  hydrophilic contaminants (using chromatographic retention time as an indicator for hydrophilicity) in the WWTP effluents remained in the water throughout its passage to groundwater and into the drinking water (see Figure 2).

 

Figure 2. Average chromatographic retention time (tR) as a measure of average hydrophilicity of contaminants present in different water types. EFF, effluent; SW, surface water; GW, groundwater; DW, drinking water. Redrawn from Sjerps et al. (2016) by Wilma IJzerman.

 

Mobility and persistence

The mobility of chemicals in aquatic ecosystems is determined by their distribution between water and solid particles. The more the substance has an affinity for the solid phase the less mobile it will be. The distribution coefficient is known as KD, which expresses the ratio between the concentrations in the solid phase (soil, sediment, suspended particles), CS, and the dissolved phase at equilibrium, CW, i.e. KD = CS/CW. For neutral non-polar chemicals the distribution is almost entirely determined by the amount of organic carbon in the solid phase, fOC, and hence their distribution is usually expressed by KOC, the organic carbon-normalized KD (i.e. KOC = KD/ fOC). Unfortunately, there are relatively few reliable KD or KOC data available, in particular for polar chemicals. Instead, KOW is often used as a proxy for KOC. The n-octanol/water partition coefficient: KOW, is the equilibrium distribution coefficient of a chemical between n-octanol and water, KOW = Coctanol/Cwater. It's logarithmic value is often used as a proxy to express the polarity of a compound: a high log KOW means that the compound favors being in the octanol phase rather than in water, which is typically the case for a nonpolar compound.  For ionizable chemicals we need to account for the pH dependency of KOW: at low pH an organic acid will become protonated (this in turn depends on its pKa value) and thus less polar. DOW is the pH-dependent KOW. It can be assumed that ions, whether cationic or anionic, will no longer dissolve into octanol but rather be retained in the water, because  ions have much higher affinity for water than for octanol.

Accounting for this, for organic acids, the pH dependency of the DOW can be expressed as:

 

Therefore, as pH increases above the pKa, the smaller the DOW will get in the case of organic acids. In the case of basis, the opposite is true; the more the pH dips below the pKa of an organic base, the more cations form and the lower the Dow becomes.

However, one has to keep in mind that the assumption that the (log) KOW or DOW value inversely correlates with a compound’s aquatic mobility is, certainly, very simplistic. The behavior of an ionic solute will obviously also be determined by interactions i) with sites other than organic carbon, e.g. ionizable or ionic sites on soil and sediment particles, and ii) with other ions in solution.

The persistence of a compound is assessed in experimental tests by monitoring the rate of disappearance of the compound from the most relevant compartment. This is often done using standardized test protocols. In the European REACH legislation of chemicals, criteria have been established to qualify chemicals as persistent (P) and “very persistent”(vP) based on the outcomes of such tests. Table 1 presents the P and vP criteria used. Unfortunately, good-quality experimental data on half-lives are rare and obtaining such data requires both time-consuming and expensive testing.

Currently there is no certified definition of a compound’s mobility (M). Several possible compound properties have been proposed to characterize mobility, including a compound’s aqueous solubility or its KOC value. If (experimental) KOC values are not available, DOW values can be used as a proxy.

 

Table 1. P and vP criteria identical to Annex XIII to the REACH regulation (source: ECHA chapter R.11. Version 3.0, June 2017)

 

Persistent (P) in any of the following situations

Very persistent (vP) in any of the following situations

Freshwater

Half-life > 40 days

Half-life > 60 days

Marine water

Half-life > 60 days

Half-life > 60 days

Freshwater sediment

Half-life > 120 days

Half-life > 180 days

Marine sediment

Half-life > 180 days

Half-life > 180 days

Soil

Half-life > 120 days

Half-life > 180 days

 

 

Table 2. Proposed cut off values of compound properties proposed by the German Environmental Agency (UBA) to define substance mobility*

 

Mobile (M) if compound is P or vP and any of the following situations

very Mobile (vM) if compound is P or vP and any of the following situations

Lowest experimental log KOC

(at pH 4-9)

≤4.0

≤3.0

Log DOW

(at pH 4-9)

≤4.0 if no experimental

Log KOC data available

≤3.0 if no experimental

Log KOC data available

* note that the proposed criteria may change by the time of publication

 

Regulation and gaps in knowledge

The majority of chemicals for which international guidelines exist or that are identified as priority pollutants in existing regulations (e.g. EU Water Framework Directive and REACH), are nonpolar with log DOW values mostly above two (see Figure 3b). The German Ministry of Environment (UBA) has recently proposed to develop regulation for chemicals with P, M and toxic (T) properties (PMT substances) analogous to the existing PBT criteria used for regulation of chemicals in the EU. UBA proposed to use cut-off values of the KOC or DOW (if KOC data are not available) to define Mobile (M) or very mobile (vM) in conjunction with persistence criteria (see Table 2). Note that the KOC and DOW values have to be obtained from testing at an environmentally relevant pH range (pH 4-9).

 

Figure 3. Box and whisker plots of calculated logDOW  values at pH 7.4 of: (a) contaminants in water analyzed by either GC-MS or LC-MS  and of examples of mobile chemicals; (b) contaminants regulated by the Stockholm Convention; candidates of Substances of Very High Concern (SVHCs) according to REACH, Article 57 d−f; the list of priority substances according to the Water Framework Directive (WFD); and the so-called Watch List of the WFD. The whiskers point to the 10th and 90th percentile. Numbers in (a) refer to 1: Aminomethylphosphonic acid (AMPA), 2: Paraquat, 3: Cyanuric acid, 4: N,N-dimethylsulfamide (DMS), 5: Diquat, 6: 5-Fluorouracil, 7: Glyphosate, 8: Melamine, 9: Metformin, 10: Perfluoroacetic acid, 11: EDTA. Redrawn from Reemtsma et al. (2016) by Wilma IJzerman.

 

When we consider current analytical techniques used for monitoring contaminants in the environment, it can be readily seen that the scope of techniques most often used (gas chromatography, GC, and reversed-phase liquid chromatography, RPLC) do not overlap with what is required for chemicals having log DOW values typical of the most mobile chemicals, having a log Dow below zero (see Figure 3a). Consequently, there is limited information available on the occurrence and fate of these mobile chemicals in the environment. Nevertheless, some examples of persistent and mobile chemicals have been identified. These include highly polar pesticides and their transformation products, for instance glyphosate and aminomethylphosphonic acid (AMPA), short-chain perfluorinated carboxylates and sulfonates, quaternary ammonium chemicals such as diquat and paraquat and complexing agents such as EDTA. There are, however, likely to be many more chemicals that could be classified as PMOC and we can therefore conclude that there is a gap in the knowledge and regulation of persistent mobile organic chemicals.

 

References

Arp, H.P.H., Brown, T.N., Berger, U., Hale, S.E. (2017). Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility. Environmental Science: Processes Impacts 19, 939-955.

Reemtsma, T., Berger, U., Arp, H. P. H., Gallard, H., Knepper, T. P., Neumann, M., Benito Quintana, J., de Voogt, P. (2016). Mind the gap: persistent and mobile organic chemicals - water contaminants that slip through. Environmental Science & Technology 50, 10308-10315.

Sjerps, R.M.A., Vughs, D., van Leerdam, J.A., ter Laak, T.L., van Wezel, A.P. (2016). Data-driven prioritization of chemicals for various water types using suspect screening LC-HRMS. Water Research 93, 254-264.