(draft)
Author: Ansje Löhr
Reviewer: John Parsons
Leaning objectives:
You should be able to:
Keywords: Plastic types, sources of plastics, primary and secondary microplastics, plastic degradation, effects of plastics
Introduction
Since its introduction in the 1950s, the amount of plastics in the environment has increased dramatically (Figure 1). A recent study by Jambeck et al. (2015) estimated that 192 coastal countries generated 275 million metric tonnes of plastic waste in 2010 of which around 8 million tons of land-based plastic waste ends up in the ocean every year. By UN Environment plastic pollution is seen as one of the largest environmental threats. If waste management does not change rapidly, another 33 billion tonnes of plastic will have accumulated around the planet by 2050. (Micro)plastics is widely recognized as a serious problem in the ocean, however, plastic pollution is also seen in terrestrial and freshwater systems.
Classification by size and morphology
Plastics are commonly divided into macroplastics and microplastics; the latter plastic particles are <5 mm in diameter (including nanoplastics). There are several ways to classify microplastics but the following two types are often used; primary microplastics and secondary microplastics. Primary microplastics have been made intentionally, like pellets or microbeads, secondary microplastics are fragmented parts of larger objects. Microplastics show a large variety in characteristics such as size, composition, weight, shape and color. These characteristics have an influence on the behaviour in the environment, like for instance, the dispersion in water and the uptake by organisms (Figure 2). Low-density particles float on water and are therefore more prone to advection than particles with a
higher density. Similarly, spheres are more likely to be taken up by organisms than fibers. The characteristics also affect the absorption of contaminants, adsorption of microbes, and potential toxicity.
Figure 1. Global plastic production and future trends (source: http://www.grida.no/resources/6923; 2019, GRID-Arendal & Maphoto/Riccardo Pravettoni).
Figure 2. Marine litter comes in all sizes. Large objects may be tens of metres in length, such as pieces of wrecked vessels, lost. (Source: http://www.grida.no/resources/6924; 2019; GRID-Arendal & Maphoto/Riccardo Pravettoni).
Classification by chemistry
Plastic is the term used to define a sub-category of the larger class of materials called polymers, usually synthesized from fossil fuels, although biomass and plastic waste can also be used as feedstock. Polymers are very large molecules that have characteristically long chain-like molecular architecture. There are many different types of plastics but the market is dominated by 6 classes of polymers: polyethylene (PE, high and low density), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS, including expanded EPS), polyurethane (PUR) and polyethylene terephthalate (PET) (figure 3). In order to make materials flexible, transparent, durable, less flammable and long-lived, additives to polymers are used such as flame retardants (e.g. polybrominated diphenyl ethers), and plasticisers (e.g. phthalates). Some of these substances are known to be toxic to marine organisms and to humans.
Figure 3. Different types of plastics (source https://isustainrecycling.com/plastics-recycling/)
Biopolymers/ bioplastics
There is a lot of discussion on bioplastics as degradable plastics that these may still persist for a long time under marine conditions. Please watch this video by dr. Peter Kershaw.
Plastic degradation
Degradation of plastics takes place as soon as the plastic loses its original integrity and properties. There is a faster breaking up phase (degradation into microparticles) and a much slower mineralization phase (polymer chains being degraded to carbon dioxide). The degradation rate of plastics is determined by its polymer type, additive composition and environmental factors. Many commonly-used polymers are extremely resistant to biodegradation. Although plastics degrade in natural environments it is argued that no polymer can be efficiently biodegraded in a landfill site. Plastics in aquatic environments can be subject to in-situ degradation, e.g. by photodegradation or mechanical fragmentation but are in general very durable. As a result, plastics that are present in our oceans will degrade at a very slow pace, (Figure 4). So the majority of plastics produced today will persist in the environment for decades and probably for centuries, if not millennia.
Figure 4. “How long until it is gone” : the time required to degrade different materials. (source https://futurism.com/plastic-decomposition)
Plastics in the environment
Plastics are found in terrestrial, freshwater, estuarine, coastal and marine environments, and even in very remote areas of the world and the deep-sea. Sources and pathways of marine litter are diverse and exact quantities and routes are not fully known. But there is a surge in interest to determine the exact quantities and types of plastic litter and pathways in the environment and most of the plastic in our oceans originates from land-based sources (Figure 5) but also from sea-based sources. Most PE and PP is used in (single-use) packaging products that have a short lifetime and end up soon as waste.
Figure 5. Overview of the major sources of primary microplastics and the generation of secondary microplastics (Source: http://www.grida.no/resources/6929; 2019; GRID-Arendal & Maphoto/Riccardo Pravettoni).
Primary microplastics in terrestrial environments mostly originate from the use of sewage sludge containing microplastics from personal care or household products. In agricultural soils the application of sewage sludge from municipal wastewater treatment plants to farmland is probably a major input, based on recent MP emission estimates in industrialized countries. Plastic pollution in terrestrial systems is also linked to the use of agricultural plastics, such as polytunnels and plastic mulches. Secondary microplastics originate from varying and diverse sources, for example from mismanaged waste either accidentally or intentionally.
As plastics have become widespread and ubiquitous in the environment, they are present in a diversity of habitats and can impact organisms at different levels of biological organization, possibly leading to population, community and ecosystem effects. Entanglement is one of the most obvious and dramatic physical impacts of macroplastics, as it often leads to acute and chronic injury or death. In particular the higher taxa (mammals, reptiles, birds and fish) are affected, and it may be critical for the success of several endangered species. Because of similar size characteristics to food, plastics are both intentionally and unintentionally ingested by a wide range of species, such as invertebrates, fish, birds and mammals. Ingestion of the non-nutritional plastics can cause damage and/or obstruction of the digestive tract and may lead to decreased foraging due to false feelings of satiation, resulting in reduced energy reserves.
Microplastics and in particular nanoparticles that are small enough to be taken up and translocated into tissues, cells and body fluids can cause cellular toxicity and pathological changes due to particle toxicity. In addition, there are also chemical risks involved as plastics can be a source of hazardous chemicals. These chemicals can be part of the plastic itself (i.e. monomers and additives) and/or chemicals that are absorbed from the environment into the matrix or such as lead, cadmium, mercury, persistent organic pollutants (POPs) like PAHs, PCBs and dioxins. However, as this process depends on the fugacity gradients, there is a lot of uncertainty about the extent that transfer of pollutants does occur in the environment. Actually, when taking all exposure pathways into account, the transfer from (micro)plastics seems to be a minor pathway.
Watch the video on the research of Inneke Hantoro.
Finally, marine plastics may act as floating habitats for invasive species, including harmful algal blooms and pathogens, leading to spreading beyond their natural dispersal range and creating the risk of disrupting ecosystems of sensitive habitats.