Periodiciteit bij breuken

Periodiciteit bij breuken

Periodiciteit bij breuken

Opdracht van U-Talent, gepubliceerd via betadifferentiatie.nl

In deze opdracht leer je dat het omzetten van een breuk naar een kommagetal maar weinig tijd kost: je hoeft alleen een begin uit te rekenen, dat zich daarna herhaalt, zoals bij 1/11 = 0,0909?.. Je vindt in deze opdracht uit hoe lang dat begin is, en hoe de lengte van de noemer van de breuk afhangt. De bouwstenen van onze getallen (de priemgetallen) heb je nodig om de verbanden te begrijpen. Daardoor verrijk je ook je kennis van de getaltheorie. Je bevindingen presenteer je aan je docent en je medeleerlingen. Natuurlijk geef je een verklaring met paar extra mooie voorbeelden!

 
  Universiteit Utrecht

 

 

Colofon

Het arrangement Periodiciteit bij breuken is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

Laatst gewijzigd
2024-11-14 11:13:28
Licentie

Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding vrij bent om:

  • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
  • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
  • voor alle doeleinden, inclusief commerciële doeleinden.

Meer informatie over de CC Naamsvermelding 4.0 Internationale licentie.

Aanvullende informatie over dit lesmateriaal

Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

Toelichting
In deze opdracht leer je dat het omzetten van een breuk naar een kommagetal maar weinig tijd kost: je hoeft alleen een begin uit te rekenen, dat zich daarna herhaalt, zoals bij 1/11 = 0,0909?.. Je vindt in deze opdracht uit hoe lang dat begin is, en hoe de lengte van de noemer van de breuk afhangt. De bouwstenen van onze getallen (de priemgetallen) heb je nodig om de verbanden te begrijpen. Daardoor verrijk je ook je kennis van de getaltheorie. Je bevindingen presenteer je aan je docent en je medeleerlingen. Natuurlijk geef je een verklaring met paar extra mooie voorbeelden!
Leerniveau
VWO 6; VWO; VWO 4; VWO 5;
Leerinhoud en doelen
Rekenen/wiskunde; Inzicht en handelen;
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur en 0 minuten
Trefwoorden
fi, showcase_nl, u-talent

Gebruikte Wikiwijs Arrangementen

Freudenthal Instituut. (z.d.).

Sjabloon [NIET WEGGOOIEN OF AANPASSEN!]

https://maken.wikiwijs.nl/207790/Sjabloon__NIET_WEGGOOIEN_OF_AANPASSEN__

Downloaden

Het volledige arrangement is in de onderstaande formaten te downloaden.

Metadata

LTI

Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

Arrangement

IMSCC package

Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

Meer informatie voor ontwikkelaars

Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.

close
Colofon
gemaakt met Wikiwijs van kennisnet-logo
open