Practicum Warmtetransport

Practicum Warmtetransport

Practicum Warmtetransport

Warmteoverdracht

2 lessen voor onderbouw vmbo en havo/vwo

Warmteoverdracht is een practicum dat start met een elementaire oefening in het meten van temperatuur en tijd in een afkoelingsproces en dat eindigt met een open onderzoek naar effecten van isolatie. Nuttig voor de energietransitie! Het practicum werd ontwikkeld voor onderbouw vmbo maar is ook productief gebruikt voor andere onderwijsvormen. Het werd ook gepubliceerd in de School Science Review (VK) in 1987.

Het eerste deel van het practicum is een kookboekachtige oefening in meten en gegevensverwerking. Het tweede deel is open met veel ruimte voor leerlingideeën. Opdracht 3 is een isolatieopdracht nog zonder theorie. Verolgens worden de begrippen stroming, straling, en geleiding uitgelegd en dan volgt isloatieopdracht 4 waarin leerlingen vrij zijn om op wat voor manier dan ook isolatie aan te brengen en experimenteel te toetsen, maar waarin ze wel heen-en-weer moeten denken tussen het theoretisch model (stroming, straling, geleiding, deeltjes) en hun isolatiemethode. 

Uiteindelijk zijn de isolatieopstellingen vaak zo goed dat er soortelijke warmten mee kunnen worden gemeten. Dat kan dan een volgend practicum zijn waarbij dan de nadruk ligt op zorgvuldig meten en rekenen.

Practicum Warmteoverdracht Leerlingwerkblad

Een practicum voor onderbouw vmbo/havo/vwo

Introductie

Thuis verwarmen we vaak vloeistoffen zoals water voor thee of koffie. Soms hebben we haast en is onze thee of koffie te warm om te drinken. Vervolgens proberen we het af te koelen door te roeren of te blazen. Op andere momenten willen we onze koffie zo lang mogelijk warm houden en doen we een soort deksel op onze koffiepot of gebruiken we een thermosfles. In een reeks activiteiten gaan we enkele methoden bedenken om vloeistoffen af te koelen of warm te houden, en we gaan zien hoe goed deze methoden werken.

Materialen

Per groepje van 2 of 3 leerlingen: 2 glazen van 250 ml, 1 bekerglas van 500 ml, 2 thermometers van 0 – 100 oC, stopwatch of eigen telefoon.

Algemeen materiaal voorin de klas verkrijgbaar: thermosflessen met heet water en elektrische waterkoker, isolatiematerialen zoals handdoeken, karton, piepschuim, katoen, aluminiumfolie.

Experiment 1

Vul met heet water uit de thermoskan twee identieke glazen tot ze elk voor de helft vol zijn. Label het ene glas A en het andere glas B. Wees voorzichtig, het water is HEET. Plaats een thermometer in elk glas en registreer gedurende zeven minuten elke 30 seconden de temperatuur van elk glas. Noteer je resultaten in tabel 1.

Vragen

  1. Koelt het water in de twee glazen even snel af? Waarom wel of waarom niet?
  2. Kun je, om vraag 1 te beantwoorden, de begin- en eindtemperaturen gebruiken in plaats van alle gegevens?
  3. Gebruik Excel om grafieken te maken van temperatuur A en temperatuur B versus de tijd.
  4. Is de afkoelsnelheid constant of verandert deze in de loop van de tijd?
  5. Kun je alleen de eindtemperatuur gebruiken om bovenstaande vraag te beantwoorden? Waarom of waarom niet?
  6. Waarom is het nuttig om elke halve minuut de temperatuur te registreren?
  7. Als we glas A vullen met water zodat het vol is en glas B zodat het halfvol is, welke zal dan sneller afkoelen? Waarom?

(Als je tijd over hebt, doe dan dit experiment om je voorspelling te controleren).

Experiment 2 (alleen vmbo)

Versnelt roeren het afkoelen van een kopje water? Ontwerp een experiment om te controleren of roeren het afkoelen versnelt. Controleer je plannen met de docent en voer je experiment uit. Je kunt voorzichtig roeren met je thermometer. Noteer je resultaten in Tabel 2.

(Alternatief: zou een deksel het afkoelen sterk vertragen? Ontwerp een experiment om dat te onderzoeken.)

Beschrijf hier je experiment in een schets:

Vragen

  1. Waarom kun je hier voor B het beste een ongeroerd glas gebruiken?
  2. Gebruik Excel om grafieken te maken.
  3. Denk je dat roeren het afkoelen versnelt? Gebruik je metingen om je antwoord te ondersteunen.
  4. Zal het soort roerstaafje een verschil maken? Zou roeren met een lepel een ander resultaat geven dan roeren met de thermometer? Leg uit.
  5. Wat zou voor een betere koeling zorgen: van de bodem naar de bovenkant van het kopje roeren (het onderste water naar boven brengen) of in cirkels roeren (het water laten rondstromen)? Waarom?

Experiment 3

In eerdere experimenten onderzochten we het koelen van twee glazen water en de invloed van roeren op het afkoelen van heet water. In dit experiment gaan we manieren bedenken om warm water zo lang mogelijk warm te houden. Bedenk een manier om water warm te houden en beschrijf een experiment om jouw methode te testen. Neem contact op met je docent voordat je je experiment uitvoert.

Beschrijf hier je experiment met een tekening.

Noteer je gegevens in een geschikte tabel.

Vragen

  1. Als je twee kopjes of glazen gebruikte, was de temperatuurdaling dan voor beide hetzelfde?
  2. Heeft jouw manier om het water langer warm te houden gewerkt?
  3. Als iemand jouw experiment zou willen kopiëren en het ene glas dicht bij een open raam zou zetten en het andere glas weg van het raam, zou dat dan een eerlijk experiment zijn? Waarom of waarom niet?
  4. Waarom is het beter om een glas te gebruiken dat je niet isoleert, naast het glas dat in dit experiment wel geïsoleerd is?
  5. Leg je experimentele resultaten uit.
  6. Wat zijn de bronnen van onnauwkeurigheden in dit experiment? Hoe kunnen deze bronnen van onnauwkeurigheid onder controle worden gehouden als je jouw experiment zou aanpassen en het opnieuw zou doen?
  7. Welke nieuwe vragen heeft dit experiment bij je opgeroepen?
  8. Beschrijf de manieren waarop warmte-energie je glazen verlaat om uit te leggen waarom de temperatuur van water daalt. Welke mechanismen of modellen kun je identificeren die ons kunnen helpen begrijpen hoe warmte-energie uit de glazen gaat, waardoor de temperatuur daalt?

Intermezzo theorie: hoe werkt warmteoverdracht?

In alle voorgaande experimenten werd het water na enige tijd koud, de warmte-energie verplaatste zich van het hete water naar de koudere omgeving. In de natuurkunde zijn er drie manieren waarop warmte van de ene plaats naar de andere kan bewegen (overdracht):

Geleiding:

Bij warmteoverdracht door geleiding wordt de warmte-energie van het ene molecuul doorgegeven aan het aangrenzende molecuul, dat op zijn beurt de warmte-energie doorgeeft aan het buurmolecuul. Wanneer we bijvoorbeeld één kant van een metalen staaf in een vlam verwarmen, wordt de warmte-energie van molecuul naar molecuul doorgegeven totdat deze de andere kant van de staaf bereikt. Merk op dat de moleculen zelf niet van hun plaats komen, alleen de warmte-energie verplaatst zich.

In sommige materialen, zoals metalen, kan de warmte gemakkelijk van het ene molecuul naar het andere worden verplaatst. In andere materialen zoals papier, textiel, piepschuim, en plastic kan de warmte zich niet gemakkelijk op deze manier verplaatsen.

Convectie:

Bij warmteoverdracht door convectie beweegt de warmte-energie mee met de moleculen. De moleculen bewegen van de ene plaats naar de andere en nemen de warmte-energie mee. Wanneer we bijvoorbeeld water in een pan verwarmen, verplaatsen de ‘hete’ watermoleculen aan de onderkant van de pan zich naar koelere plaatsen, waarbij ze de warmte- energie meenemen en deze afgeven aan koelere watermoleculen, waardoor al het water wordt verwarmd. Merk op dat bij convectie de moleculen van de warmere naar de koelere plaats bewegen, terwijl bij geleiding alleen de warmte-energie zich verplaatst en de moleculen op hun plaats blijven. Convectie kan alleen plaatsvinden in gassen en vloeistoffen, niet in vaste stoffen. (Waarom?)

Straling:

Bij warmteoverdracht door straling wordt de warmte-energie net als lichtenergie overgedragen. De warmte wordt uitgestraald als warmtestralen (zoals lichtstralen) van een warme plaats naar een koelere plaats. Op deze manier kan warmte-energie door een vacuüm bewegen, er zijn geen moleculen nodig om energie over te dragen. De warmte-energie van de zon verplaatst zich bijvoorbeeld door de ruimte naar de aarde door middel van straling. Warmtestraling kan worden gereflecteerd door metalen spiegels.

Naast deze belangrijkste manieren van warmteoverdracht is er nog een andere manier waarop warmte-energie kan bewegen, hoewel dit als een speciaal geval van convectie kan worden beschouwd. Wanneer vloeibaar water verdampt, absorbeert een molecuul veel energie en wordt het stoom. Wanneer de stoom een koud oppervlak raakt, geeft het zijn warmte-energie af en wordt het weer vloeibaar. Dit proces zou warmteoverdracht door verdamping en condensatie kunnen worden genoemd.

Experiment 4

Probeer met de hierboven gegeven informatie over warmteoverdracht een betere manier te bedenken om water zo lang mogelijk warm te houden. Denk goed na over hoe je warmteverlies via elk van de hierboven genoemde processen van warmteoverdracht kunt voorkomen. Voer vervolgens een experiment uit om je methode te testen en noteer de resultaten in een tabel.

 

  • Het arrangement Practicum Warmtetransport is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

    Laatst gewijzigd
    2024-11-09 18:08:48
    Licentie

    Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

    • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
    • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
    • voor alle doeleinden, inclusief commerciële doeleinden.

    Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

    Aanvullende informatie over dit lesmateriaal

    Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

    Toelichting
    Warmteoverdracht is een practicum dat start met een elementaire oefening in het meten van temperatuur en tijd in een afkoelingsproces en dat eindigt met een open onderzoek naar effecten van isolatie. Nuttig voor de energietransitie! Het practicum werd ontwikkeld voor onderbouw vmbo maar is ook productief gebruikt voor andere onderwijsvormen. Het werd ook gepubliceerd in de School Science Review (VK) in 1987.
    Eindgebruiker
    leerling/student
    Moeilijkheidsgraad
    gemiddeld
    Studiebelasting
    4 uur en 0 minuten
    Trefwoorden
    iol, modeldidactiek, nvon, onderbouw

    Gebruikte Wikiwijs Arrangementen

    Modeldidactiek. (2024).

    Modeldidactiek

    https://maken.wikiwijs.nl/203809/Modeldidactiek

    Modeldidactiek. (z.d.).

    Practicum Verdamping en Condensatie met Concept Cartoon

    https://maken.wikiwijs.nl/207492/Practicum_Verdamping_en_Condensatie_met_Concept_Cartoon

  • Downloaden

    Het volledige arrangement is in de onderstaande formaten te downloaden.

    Metadata

    LTI

    Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

    Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

    Arrangement

    IMSCC package

    Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

    Meer informatie voor ontwikkelaars

    Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.