Menu
Administrative information
  • Zoeken in arrangement
    bèta
  • Colofon
  • Opties
    Gebruik
    • Download als PDF
    • Alle download opties
    • Kopieer arrangement
    Weergave
    • Menu links
    • Geen menu
    • Menu onder voor digibord
  • wikiwijs-logo
    • Over Wikiwijs
    • Wikiwijs Updates
    • Disclaimer
    • Privacy
    • Cookies
    Wikiwijs is een dienst van

Lecture: Transformer networks

Lecture: Transformer networks

Administrative information


Title Transformer networks
Duration 60 min
Module B
Lesson Type Lecture
Focus Technical - Deep Learning
Topic

Transformer

 

Keywords


sequence-to-sequence learning, seq2seq, attention mechanism, self-attention mechanism, transformer network,

 

Learning Goals


  • Learning the basics of sequence-to-sequence (seq2seq) models
  • Learning the basics of attention mechanism
  • Getting familiar with the transformers

 

Expected Preparation


Learning Events to be Completed Before

  • Lecture: Fundamentals of deep learning

Obligatory for Students

  • Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
  • Google TensorFlow's tutorial on Transformers

Optional for Students

None.

References and background for students:

None.

Recommended for Teachers

None.

Lesson Materials


  • Lecture slides (.pptx)

 

The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


In the lecture first we just briefly repeat what we learned about sequential data previously (e.g. in the RNN lecture). Then we discuss, that we will learn about three main concepts today: sequence-to-sequence models, attention mechanism and transformer. The first two are needed to understand the concept of the transformer. You can prepare the original papers and show them to the attendees.

Seq2seq: we just briefly discuss the main concepts. The difference between the teacher forcing (training) and instance-by-instance (inferance) should be emphasized.

The source codes should be discussed in details, line-by-line, so the concept can be understood by the students in a code level.

In the second half of the lecture the transformer architecture is introduced. The core elements are discussed seperately.

If you have some time left at the end of the lecture, you can open the TensorFlow tutorial on transformer (link on this page and in the slides too).

 

Outline

  • Seq2seq models
  • Attention mechanism
  • Transformers

 

Time schedule
Duration (Min) Description
5 Sequential data introduction
7.5 Sequence-to-sequence models
7.5 Attention mechanism
15 Source codes
20 Transformer
5 Summary and conclusions

 

 

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

Colofon

Het arrangement Lecture: Transformer networks is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

Auteur
HCAIM Consortium
Laatst gewijzigd
2024-05-15 11:17:11
Licentie

Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

  • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
  • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
  • voor alle doeleinden, inclusief commerciële doeleinden.

Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

Aanvullende informatie over dit lesmateriaal

Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

Toelichting
.
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur 0 minuten

Gebruikte Wikiwijs Arrangementen

HCAIM Consortium. (z.d.).

Acknowledgement

https://maken.wikiwijs.nl/198386/Acknowledgement

HCAIM Consortium. (z.d.).

Lecture: Regularization

https://maken.wikiwijs.nl/200300/Lecture__Regularization

Lecture: Transformer networks
nl
HCAIM Consortium
2024-05-15 11:17:11
.
leerling/student
PT4H

Downloaden

Het volledige arrangement is in de onderstaande formaten te downloaden.

  • pdf
  • json
  • IMSCP package

Metadata

  • Metadata overzicht (Excel)

LTI

Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

Arrangement

IMSCC package

Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

  • IMSCC package

Voor developers

Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.

Sluiten