Interactive session: Data architecture

Interactive session: Data architecture

Administrative information


Title Data architecture
Duration 60 min
Module B
Lesson Type Interactive Session
Focus Practical - Organisational AI
Topic

Data architecture

 

Keywords


Data Architecture,Machine Learning pipeline​,MLOps​,

 

Learning Goals


  • To know the basic data architectures in Machine Learning
  • Pose questions about the most suited data architectures

 

Expected Preparation


Learning Events to be Completed Before

Obligatory for Students

  • Data Analysis Process
  • Machine Learning Models
  • DevOps
  • CI/CD

Optional for Students

None.

References and background for students:

  • DevOps
  • CI/CD

Recommended for Teachers

Lesson Materials



The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


Use the following outline:

  • Introduction to the discussion
    • What are the most diffused architectures for ML Systems?
    • What is a typical ML pipeline?
    • What is the MLOps?
    • How it is possible to automate and orchestrate a ML pipeline?
    • How it is possible configure a Continuous Integration/ Continuous Delivery CI/CD system for the ML pipeline using the Cloud?
    • Questions and further discussion on topics suggested by students
  • Discussion
    • What are the characteristics of the Tensor Flow eXTended (TFX) architecture?
    • How can Cloud support the TFX model?
    • How How it is possible to automate and orchestrate the TFX pipeline?
    • How it is possible configure a Continuous Integration/ Continuous Delivery CI/CD system for the TFX pipeline?
    • Questions and further discussion on topics suggested by students
  • Conclusions
    • Summing up and discussing the lesson outcomes:
      • Main features of an ML System Architecture and of ML pipelines
      • MLOPs
      • Automating and orchestrating a ML pipeline with reference to the TFX model
    • Conclusive remarks

Time schedule

 
Duration (min) Description Concepts
20 Introduction to the discussion ML System Architecture, ML Pipeline
30 Discussion ML in production examples
10 Summing up and conclusive remarks  

 

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

Colofon

Het arrangement Interactive session: Data architecture is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

Laatst gewijzigd
2024-05-15 11:11:15
Licentie

Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

  • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
  • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
  • voor alle doeleinden, inclusief commerciële doeleinden.

Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

Aanvullende informatie over dit lesmateriaal

Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

Toelichting
.
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur en 0 minuten

Gebruikte Wikiwijs Arrangementen

HCAIM Consortium. (z.d.).

Acknowledgement

https://maken.wikiwijs.nl/198386/Acknowledgement

HCAIM Consortium. (z.d.).

Practical: ML-Ops Lifecycle

https://maken.wikiwijs.nl/200288/Practical__ML_Ops_Lifecycle

Downloaden

Het volledige arrangement is in de onderstaande formaten te downloaden.

Metadata

LTI

Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

Arrangement

IMSCC package

Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

Meer informatie voor ontwikkelaars

Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.

close
Colofon
gemaakt met Wikiwijs van kennisnet-logo
open