Lecture: ML-Ops Lifecycle

Lecture: ML-Ops Lifecycle

Administrative information


Title MLOPs Life Cycle
Duration 60 min
Module B
Lesson Type Lecture
Focus Practical - Organisational AI
Topic

End-to-end overview of the MLOPs lifecycle

 

Keywords


MLOPs,Organizational AI,Ethical,Design,

 

Learning Goals


  • Understanding MLOPs end-to-end
  • Understanding Data Ingestion
  • Getting familiar with Algorithm Development
  • Getting familiar with Model Development and Deployment
  • Understanding Continuous Monitoring

 

Expected Preparation


Learning Events to be Completed Before

  • None

Optional for Students

  • Data Preparation and Management: Before diving into MLOps, it's beneficial to understand the initial phases of the machine learning process, especially data collection, cleaning, and preprocessing
  • Model Training and Validation: A grasp of how models are trained, validated, and evaluated will provide a solid foundation for understanding the operational aspects of ML.
  • Hyperparameter Tuning: While not always covered in depth in MLOps courses, understanding hyperparameter tuning can be beneficial as it's a crucial step in model optimization.
  • MLOps Tools and Platforms: Familiarity with tools like Kubeflow, Azure ML, and others can give students a head start.
  • Documentation Practices in ML: Proper documentation is essential in MLOps for reproducibility and collaboration. Understanding best practices in ML documentation can be advantageous.
  • CRISP-DM, CRISP-ML, ML Canvas: These are methodologies and frameworks for ML project management. Having a basic understanding can be beneficial for the operational side of ML projects.

References and background for students:

Recommended for Teachers

  • N/A

Lesson Materials



The materials of this learning event are available under CC BY-NC-SA 4.0.

 

Instructions for Teachers


  • This Lecture will provide a complete overview/foundation of MLOPs lifecycle. The lecture will provide some foundations and background (including some code snippets) that will be required for the following tutorial that will put into practice the MLOps process of testing a model for production purposes. Specifically the lecture will cover:
    • AI is Software 2.0 - Pre and Post-World AI
    • MLOPs lifecycle: DataOps, Model Ops and DevOps - how does it all fit in.
      • Expanding Ecosystem
      • MLOPs lifecycle - end-to-end approach
      • Data, Model and Code - the backbone of MLOPs
    • AI Software and App Stack
      • Available tools in the market today
      • Understanding various App stacks
      • MLOPs Design Elements
    • Architectural Choices
      • Batch VS Streaming - What is best approach
      • Testing strategies - How to rigorously test your ML models

Most of the preparation items are set up and introductions to the tools used.

 

Outline

Outline/time schedule
Duration (Min) Description
10 AI is Software 2.0
15 MLOPs - about great deployment and monitoring
10 An overview of MLOPs testing
15 Runtime, Tooling and Performance considerations
10 A Complete MLOPs testing Paradigm

 

More information

Click here for an overview of all lesson plans of the master human centred AI

Please visit the home page of the consortium HCAIM

Acknowledgements

The Human-Centered AI Masters programme was co-financed by the Connecting Europe Facility of the European Union Under Grant №CEF-TC-2020-1 Digital Skills 2020-EU-IA-0068.

The materials of this learning event are available under CC BY-NC-SA 4.0

 

The HCAIM consortium consists of three excellence centres, three SMEs and four Universities

HCAIM Consortium

Colofon

Het arrangement Lecture: ML-Ops Lifecycle is gemaakt met Wikiwijs van Kennisnet. Wikiwijs is hét onderwijsplatform waar je leermiddelen zoekt, maakt en deelt.

Laatst gewijzigd
2024-05-15 11:15:21
Licentie

Dit lesmateriaal is gepubliceerd onder de Creative Commons Naamsvermelding-GelijkDelen 4.0 Internationale licentie. Dit houdt in dat je onder de voorwaarde van naamsvermelding en publicatie onder dezelfde licentie vrij bent om:

  • het werk te delen - te kopiëren, te verspreiden en door te geven via elk medium of bestandsformaat
  • het werk te bewerken - te remixen, te veranderen en afgeleide werken te maken
  • voor alle doeleinden, inclusief commerciële doeleinden.

Meer informatie over de CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie.

Aanvullende informatie over dit lesmateriaal

Van dit lesmateriaal is de volgende aanvullende informatie beschikbaar:

Toelichting
.
Eindgebruiker
leerling/student
Moeilijkheidsgraad
gemiddeld
Studiebelasting
4 uur en 0 minuten

Gebruikte Wikiwijs Arrangementen

HCAIM Consortium. (z.d.).

Acknowledgement

https://maken.wikiwijs.nl/198386/Acknowledgement

HCAIM Consortium. (z.d.).

Lecture: CI/CD

https://maken.wikiwijs.nl/200238/Lecture__CI_CD

Downloaden

Het volledige arrangement is in de onderstaande formaten te downloaden.

Metadata

LTI

Leeromgevingen die gebruik maken van LTI kunnen Wikiwijs arrangementen en toetsen afspelen en resultaten terugkoppelen. Hiervoor moet de leeromgeving wel bij Wikiwijs aangemeld zijn. Wil je gebruik maken van de LTI koppeling? Meld je aan via info@wikiwijs.nl met het verzoek om een LTI koppeling aan te gaan.

Maak je al gebruik van LTI? Gebruik dan de onderstaande Launch URL’s.

Arrangement

IMSCC package

Wil je de Launch URL’s niet los kopiëren, maar in één keer downloaden? Download dan de IMSCC package.

Meer informatie voor ontwikkelaars

Wikiwijs lesmateriaal kan worden gebruikt in een externe leeromgeving. Er kunnen koppelingen worden gemaakt en het lesmateriaal kan op verschillende manieren worden geëxporteerd. Meer informatie hierover kun je vinden op onze Developers Wiki.

close
Colofon
gemaakt met Wikiwijs van kennisnet-logo
open