7.5 Hoe kwetsbaar was de Enigma?

De aanvangsinstellingen worden voorgeschreven door een codeboek en voor iedere dag wordt op deze manier een andere sleutel gebruikt. Iedereen die de Enigma gebruikt moet beschikken over het codeboek. De distributie van het codeboek is moeilijk, want het codeboek mag niet in handen vallen van de vijand omdat daarmee het hele systeem blootgelegd wordt. Vergeleken met de distributie voor een éénmalig blokcijfer valt het echter mee.
Mocht de vijand een Enigma in handen krijgen, dan nog zou hij niet weten wat de beginstand was en hij zou alle 17.576 instellingen moeten nalopen. Als hij elke minuut een instelling zou kunnen nalopen dan zou hij daarvoor ruim 12 dagen nodig hebben. Het kan mee zitten en tegen zitten maar gemiddeld zou de tekst na 6 dagen ontcijferd worden. Echter, als er een afdeling zou zijn waar 12 ontsleutelaars aan 12 Enigma's zouden kunnen werken (maar waar haal je die vandaan?), dan zou de klus maximaal 1 dag duren en met een beetje geluk misschien maar een paar uur.
Scherbius vond het daarom raadzaam zijn machine veiliger te maken door de scramblers verwisselbaar te maken. De toevoeging van 6 kabels voor het schakelbord betekende bovendien dat het alfabet op een groot aantal manieren veranderd kon worden.

Opgave 1 

Het verwisselen van de letters van het alfabet noemen we een permutatie. Door de 3 scramblers zijn er al 17.576 permutaties.
Hoeveel permutaties zijn er als de drie schijven verwisselbaar zijn en er bovendien 6 kabels voor het schakelbord zijn waarmee 6 paren letters verwisseld kunnen worden?
Hoe lang heb je nodig om al deze permutaties uit te proberen?

De berekening bij opgave 1 laat zien dat er zeer veel permutaties ontstaan omdat het schakelbord heel veel combinaties van verschillende tweetallen oplevert. Als je slechts één letterpaar verwisselt kun je kiezen uit 26x25/2 paren, 26 keuzes voor de eerste letter en 25 voor de tweede. Hier zit een dubbeltelling in omdat het niet uitmaakt omdat het letterpaar hetzelfde blijft als je volgorde omdraait. Een A met een P verwisselen komt overeen met een P met een A verwisselen, bijvoorbeeld. 
Voor het tweede paar kun je nog kiezen uit 24x 23/2 mogelijkheden.
Als je 12 letterparen mag verwisselen kun je het klare alfabet op 
(26x25/2)x(24x23/2)x(22x21/2)x(20x19/2)x(18x17/2)x(16x15/2)/6! manieren veranderen. We delen het totaal door 6! (=720) omdat dit het aantal manieren is om de volgorde van de gekozen paren te verwisselen. Ook dat levert immers dubbeltellingen. Het aantal wordt nog groter als je ook meerekent dat er maar 5 of 4 of misschien maar 1 kabel gebruikt wordt.

Opgave 2

Verreweg de meeste permutaties ontstaan door de zes kabels en het schakelbord (100.391.791.500).
Waarom vond Scherbius het toch de moeite om ook de scramblers te gebruiken?

Uit opgave 2 volgt dat je moet bedenken dat het alfabet maar weinig verandert als je maar 2 letters verwisselt en dat daarmee al snel een leesbare tekst ontstaat als je de goede scramblerposities gevonden hebt. Ook liggen heel veel permutaties erg dicht naast elkaar omdat ten opzichte van elkaar bijvoorbeeld slechts 2 of 4 letters verwisseld zijn.

 

Reflectie

Dat een tekst niet moeilijk te ontcijferen is als je alleen 6 paren verwisselt met het schakelbord, is duidelijk te zien aan onderstaande korte tekst. Met een beetje frequentieanalyse kom je er snel achter wat hier zou moeten staan:

BH IIN GRBTI HAWWILTBIS, RBBW MIT DETTI LTEHHIN, UAT KAOBZTIR LHESSIOIIN PIIN IN DIIR TI DEHHIN

klik hier 

 

Een verwisseling van twee scramblers levert een heel ander cijferalfabet op. Het gebruik van 6 kabels verminkt bijna de helft van de tekst waardoor deze weer onherkenbaar geworden is. Als je alle cijferalfabetten uit gaat proberen (stel dat je dit heel snel zou kunnen) dan geldt echter ook nu weer dat er heel veel teksten uit het niets ontstaan die de codebrekers op een dwaalspoor brengen en behoorlijk wat hoofdpijn zullen bezorgen. Dit verschijnsel is een beetje vergelijkbaar met het verschijnsel bij het cijferblok.

Opgave 3

a) Zet hierboven de scramblers in de positie 231, de ringen in de beginstand 13 4 20 en schakel AU; BL; DV; EH; KN en TX.
    Stel de indicator settings in op CAB.
    In de advanced settings staat het aantal rotors op 3 en de reflector in stand C.
    Voer nu de klare tekst in : heteerstebericht.
    Hoe luidt de cijfertekst?

 

b) Stuur nu een bericht aan de leerling waaraan je gekoppeld bent en vraag een antwoord. 
    Ontcijfer het antwoord en controleer bij elkaar of het geheime bericht en het antwoord goed is overgekomen.

In latere versies maakte Scherbius de Enigma steeds gecompliceerder en nam het aantal mogelijke instellingen verder toe. Het aantal kabels werd bijvoorbeeld opgevoerd van 6 naar 9. Intussen probeerde hij de Enigma te verkopen, maar dat leverde weinig op. Het apparaat was te duur voor gewone bedrijven want een enkel exemplaar kostte ruim 20.000 pond. Ook het leger was weinig geïnteresseerd omdat deze nog altijd niet in de gaten hadden wat er in de Eerste Wereldoorlog misgegaan was. Deze leefde in de illusie dat het Zimmermann-telegram in Mexico door Amerikaanse spionnen gestolen was en gaf daar Mexico de schuld van.
Ook andere uitvinders, die in andere landen gelijktijdig soorgelijke aparaten hadden ontwikkeld, zoals Edward Hugh Hebern in Amerika en Alexander Koch in Nederland, wisten hun uitvinding niet of nauwelijks aan de man te brengen.

In 1923 bracht echter Winston Churchill een publicatie uit onder de titel The World Crisis, waarin hij uit de doeken deed hoe begin september 1914 een codeboek gevonden was in de armen van een verdronken Duitse officier en hoe de Britten dit in handen hadden gekregen. Het had de cryptoanalisten in Kamer 40 enorm geholpen de Duitse codeberichten te breken.
Als tweede publiceerde in 1923 de Britse Royal Navy het officiële verhaal van de geschiedenis en de verrichtingen van de Britse geheime dienst waardoor uitkwam dat het Duitse cryptografische systeem zo lek als een mandje was.

De Duitse geheime dienst werd hiermee eigenlijk goed voor schut gezet en om herhaling te voorkomen startten de Duitsers een onderzoek. Hieruit kwam naar voren dat de Enigma de beste oplossing bood. Scherbius startte de massaproductie van zijn machine in 1925, die eerst door het leger en later ook door verschillende staatsbedrijven gebruikt zou gaan worden.
De versie die door het leger gebruikt zou gaan worden verschilde van de commerciële versie doordat de bedrading in de schijven anders was. Het leger bestelde 30.000 van deze apparaten en bij het uitbreken van de Tweede Wereldoorlog beschikten de Duitsers over het best beveiligde cryptografische systeem van de wereld. Lange tijd had het er alle schijn van dat dit systeem de Duitsers zou helpen de overwinning te behalen. Scherbius zou het niet meer meemaken omdat hij in 1929 bij een ongeval om het leven kwam.

 

Puzzel eens uit wat hier hoort te staan?